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ABSTRACT

Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems
characterized by a large number of constraints that naturally occur in blocks. We propose a
class of multilevel optimization methods motivated by the structure and number of constraints
and by the expense of the derivative computations for MDO. The algorithms are an extension to
the nonlinear programming problem of the successful class of local Brown-Brent algorithms for
nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to
fit the application, and they separately process each block and the objective function, restricted to
certain subspaces. The methods use trust regions as a globalization startegy, and they have been
shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be
applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems
of equations are a special case of the multilevel optimization methods. In this case, they can be
viewed as a trust-region globalization of the Brown-Brent class.
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1 Introduction

This work is concerned with a class of methods, called multilevel optimization algorithms, for
solving the nonlinear equality constrained optimization problem, i.e.,

Problem EQC:

minimize f(x)

subject to C(x) = 0,

where f : R" --+ R and C : -n _- *v, m < n, are at least twice continuously differentiable.

The proposed class of algorithms can be used to solve any general nonlinear equality constrained
optimization problem, but its development has been motivated by the engineering design problems
that give rise to large-scale optimization formulations with constraints occuring naturally in blocks.
In particular, in the multidisciplinary design optimization (MDO) environment, the sheer number
of constraints, the structure of the problems, and the expense of the derivative computations
necessitate the development of flexible algorithms that allow the user to partition the problem into
a set of smaller problems.

While there is a number of nonlinear optimization methods that attack large problems by
decomposing them into several smaller ones, these methods require the problems to have a special
structure, for example, separability and convexity.

In particular, in engineering, decomposition and multilevel optimization have been used to
solve large problems for some time. See [15] and [29] for a survey. The process of decomposition
and multilevel formulation generally depends on identifying groups of variables and constraints
that influence each other only weakly. The problem is then decomposed into such weakly cou-

pled subproblems in various possible formulations, some hierarchic, some nonhierarchic. Recent
developments in formulations can be found in [3] and [9]. Some of the approaches in [3] have been
proven to be successful for many problems. In order to be more widely applicable, it requires the
development of theoretical foundations.

We propose a class of multilevel optimization methods (see [1]), for solving the nonlinear equality
constrained optimization problem characterized by the following features:

" The constraints of the problem can be partitioned into blocks in any manner suitable to an
application, or in any arbitrary manner at all. The analysis of the methods assumes certain
standard smoothness and boundedness properties, but no other assumptions are made on the
structure of the problem. There is no need to identify the weakly coupled groups of variables
and constraints, although that may be helpful in practice. If all constraints and variables
are strongly coupled, the partitioning can be done according to any other criterion useful to
a particular application, for example, just the size of constraint blocks. The algorithm then
solves progressively smaller dimensional subproblems to arrive at the trial step.

" The multilevel methods belong to the class of out-of-core methods. To the authors' knowledge,
the multilevel algorithms are the only algorithms for general nonlinear optimization problems
that require only a currently processed part of the constraints to be held in memory. Thus,
theoretically, there is no limit to the size of the problem the methods can handle.
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"* The trial steps computed by the algorithm are required to satisfy very mild conditions, both
theoretically and computationally. In fact, the substeps comprising the trial step can be

computed in the subproblems using different optimization algorithms. The substeps are

only required to satisfy a mild decrease condition for the subproblems and a reasonable
boundedness condition-both satisfied in practice by most methods of interest. This feature

is of great practical significance because in applications like MDO various constraint blocks

may originate from different disciplines and may require different approaches to solving the
subproblems.

"* The class uses trust regions as a globalization strategy. The algorithms are proven to converge
under reasonable assumptions.

"* The algorithms together with their convergence theory provide a foundation for developing
the algorithms and analyses of the general multilevel optimization formulations.

The proposed multilevel class of algorithms differs from the conventional algorithms in that its
major iteration involves computing an approximate solution of not one model over a single restricted

region, but of a sweep of models, each approximately minimized over its own restricted region. Each

model approximates a block of constraints and, finally, the objective function, restricted to certain
subspaces. Each model is computed at a different point. The case of a single block of constraints
is included.

In the next section we introduce the foundations on which the proposed class of algorithms rests.

Section 3 is devoted to the description of the class. Section 4 briefly describes current theoretical
results. Section 5 concludes with a summary and discussion of current and future research.

2 Preliminaries

The proposed class of algorithms may be viewed as an extension of several areas of research. In
this section we describe the existing algorithms and analysis schemes which serve as a foundation

for the multilevel optimization methods.

2.1 The Local Brown-Brent Class of Methods

Theoretical origins of this research lie in the method for solving nonlinear systems of equations,

F(z) = 0, F: R• -+ R, introduced by Brown in [5], [6], [7].In [4], Brent viewed Brown's method
from a different perspective, which allowed Brent to propose a class of methods, among which

Brown's original method was a special case. Gay [14] and Martinez [23], [24] provided further

modifications and generalizations of the methods.

The following statement of the general Brown-Brent algorithm was condensed from the de-
scriptions in Gay [14] and Dennis [17]. In these works the algorithm is described in terms of
one-dimensional blocks.

Denote the components of F(x) by Fi(x),. . ., Fn(x).

Algorithm 2.1 Local Brown-Brent Algorithm for Nonlinear Systems

Let z, be the current approximation to the solution.
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Outer Loop: Do until convergence:

Yo = Xc
H1o =n

Inner Loop: Do k = 1, n
1. Form the linearization, Lk about Yk-1 of Fk restricted to k- 1 Hi.

Lk = 0 defines Hk, an (n - k)-dimensional hyperplane in Rn.k-1k

2. Move from Yk-1 E 1l=0 Hi to yA E flý¶ 0 Hi.

End Inner Loop
2c - Yn

End Outer Loop

The point yn of intersection of all the hyperplanes is the point where all the linearizations vanish.
The way in which the steps 1-2 of the inner loop are actually done determines the particular kind
of Brown-Brent method. In Brent's method, Sk = Ak - Yk-1 is the shortest £2 norm step from
yk-1 to Hk. In Brown's method, Sk is the shortest t2 norm step from yk-I to Hk parallel the k-th
coordinate axis.

When applied to a linear system of equations, i.e., when F(x) = Ax - b, Brown's method is
equivalent to Gaussian elimination with pivoting about the maximum row element of the reduced
matrix [5], while Brent's method is equivalent to factoring A into a product of a lower triangular
matrix and an orthogonal matrix [4]. It can be shown, based on [31], that there exists a Brown-Brent
analog for any matrix decomposition in the linear case.

Brown [5], [7], Brown and Dennis [8], Brent [4], and Gay [14] established local quadratic con-
vergence of variants of the algorithm, both for analytic and finite difference derivatives. To the
authors' knowledge, there had been no theoretically supported global extensions of Brown-Brent
methods until [1].

2.2 Trust-Region Methods

Consider the following unconstrained minimization problem.
Problem UNC:

minimize f(x)

x E Rn,

where f : R' -+ R is continuously differential. Given x,, the current approximation to the solution,
a trust-region algorithm for solving the problem finds a trial step by solving the following trust-
region subproblem approximately:

minimize f(Xz) + Vf(Xz)Ts + 1s Hcs (1)

subject to IIsJ _< 65,

where f, b, E R, Vf, a E g', H, - H T E R,'× is the Hessian of f or an approximation to it, b, > 0
is the trust-region radius, and I" It denotes the t2 norm. The idea is to accept the trial step when
the quadratic model adequately predicts the behavior of the function, and to recompute the step
in a smaller region if it does not.
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The trust-region approach to the problem of solving systems of nonlinear equations is just a
special case of the approach to the problem above; namely, for nonlinear equations, the objective
function f(x) is taken to be JIF(x)It .

Detailed treatment of the trust-region approach to unconstrained optimization and nonlinear
equations can be found in Dennis and Schnabel [18], Sorensen [301, Mor6 [251, Mor6 and Sorensen
[261, Powell (21], and Shultz, Schnabel and Byrd[28].

For the equality constrained optimization problem, the successive quadratic programming (SQP)
algorithm is used commonly. Its step is found by computing a minimum of the quadratic model
of the Lagrangian at the current point, subject to linearized constraints. A trust-region algo-
rithm based on SQP adds the trust-region constraint to the subproblem and additional constraints
designed to ensure that the trust-region constraint and the linearized constraints are consistent.

2.2.1 Merit Functions

In order to evaluate a trial step, trust-region algorithms use merit functions, which are functions
related to the problem in such a way that the improvement in the merit function signifies progress
toward the solution of the problem.

For unconstrained minimization, a natural choice for a merit function is the objective function
itself. Let

.(s) = f(x.) + Vf(X,)Ts + S H~s (2)

denote the quadratic model of the merit function. We define two related functions.

The actual reduction is defined as

ared,(s9) = f(x,) - f(x, + s,), (3)

and the predicted reduction is defined as

predo(s.) = 0(0) -qS(sr) (4)

- Vf(x')T(s.) - s HcSc

so that the predicted reduction in the merit function is an approximation to the actual reduction
in the merit function.

The standard way to evaluate the trial step in trust-region methods is to consider the ratio of
the actual reduction to the predicted reduction. A value lower than a small predetermined value
causes the step to be rejected. Otherwise the step is accepted.

For nonlinear systems of equations, the norm of the residuals serves as a merit function. For the
constrained optimization, the merit function is some expression that involves both the objective
function and the constraints.

We shall see that conventional merit functions prove to be inadequate for multilevel algorithms.

2.2.2 Fraction of Cauchy Decrease

To assure global convergence of a trust-region algorithm for problem UNC, the trial step is required
to satisfy a fraction uf Cauchy decrease condition. This mild condition means that the trial
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step, s,, must predict at least a fraction of the decrease predicted by the Cauchy step, which is the
steepest descent step for the model within the trust region. We must have for some fixed r > 0

Os,) - 0(0) _< n[¢(scp) - 0(0)], (5)

where
CP -- aCPvf(x,) with
C - C~ C

CP I•V~• VI(x•) T H•VI(x) -
GP = Vf(x,) T HVf (xý) if Vf(x,)II 3V~,ý I~ X,1, i 1 x1, <b

ac otherwise.

See Dennis and Schnabel [18], pp. 139-141, for details on the Cauchy point.
The fraction of Cauchy decrease property implies a weaker condition which has a more conve-

nient form and is frequently used as a technical lemma in the global convergence proofs.

Lemma 2.1 Let s, satisfy (5). Then

.(0) - O(s,) > 2 IVf(x,)JI min m iiVf(xJJ )ij 6}. (6)

References: Powell [21]; Mor6 [25].
Either (5) or (6) is necessary to establish global convergence theoretically.

2.2.3 Global Convergence Results

Powell's global convergence theorem [21] for any unconstrained minimization trust-region algorithm
serves as a prototype for most trust-region related convergence results.

Theorem 2.1 Let f : -n _ R be continuously differentiable and bounded below on the level set

{x E •?nlf(x) _< f(xo)}. Assume that {H 1 } are uniformly bounded above. Let {xi} be the sequence
of iterates generated by a trust-region algorithm that satisfies (5) or (6). Then

lim inf llVf(xj)jI = 0.
i-~00

Detailed treatment of the unconstrained minimization theory and practice can be found in Mor6
[25], Mor6 and Sorensen [26], Sorensen [30], and Shultz, Schnabel and Byrd (281.

2.2.4 Tangent-Space Methods for Constrained Optimization

The multilevel methods proposed here may be viewed as a generalization of an approach to nonlinear
programming known as the null space or generalized elimination approach (see Fletcher [13]).

Different authors refer to different methods as "null space methods", but the general idea of a

null space method for equality constrained minimization is to reduce the dimension of the problem
by first taking the step intended to solve the constraint equations, and then to minimize the model
of the function restricted to the null space of the linearized constraints. The resulting minimization
problem is of a lower dimension than the original one.

A well-known local method of this type is the GRG (Generalized Reduced Gradient) algorithm.
Details of GRG and other null space methods can be found in Lasdon [20], Fletcher [13], Avriel [21,
and Gill, Murray and Wright [27].
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A class of global trust-region algorithms that use the same general principle of reducing the
problem's dimension is known as the class of tangent space methods. The tangent space approach
was introduced to avoid the possibility of inconsistency of the constrained trust-region subproblem.

Recent work on these methods can be found in Maciel [22] and Dennis, El-Alem and Maciel

[19]. The main feature of the class is that the trial step is computed as a sum of two substeps, the
first of which is made toward the linearized constraints in the direction orthogonal to the null space

of the constraint Jacobian, while the second is made to minimize the model of the Lagrangian in
the null space of the linearized constraints. The function and derivative information is computed

at a single point x,.
The multilevel methods proposed here generalize the tangent space methods in the sense that

their trial steps are sums of t At two substeps but of as many substeps as there are constraint

blocks together with a substep on the model of the objective function with the model information
computed at the points resulting from taking the substeps one-by-one.

3 Multilevel Algorithms for Nonlinear Optimization

In this section we present the class of multilevel optimization algorithms for the nonlinear equality

constrained minimization problem. Since the time of its introduction in [1], the class has undergone
changes. In [1], the globalization and extension to constrained optimization only of local Brent's

method was proposed. Recent developments* have extended the results to provide globalization
and extension to constrained optimization of the entire local Brown-Brent class.

3.1 Notation

Due to arbitrary blocking of the constraints, the notation becomes cumbersome. To ease the
reading effort, we omit the subscripts and superscripts where possible. Here is an explanation of
the notation conventions.

Unless specified otherwise, all norms are 12 norms.
lFrom here on, we assume that the equality constraints of problem EQC are partitioned into

M blocks of arbitrary size and composition. Let the constraints of the first block be numbered
from n, = 1 to n2 - 1; the constraints of the second block-from n 2 to n3 - 1; and so on, until the

constraints of the last block are numbered from nM_1 to nM = m.
The algorithms will be formally considered to have an outer loop, in which we make the decision

about the acceptability of the step, and the inner loop, in which we solve a sequence of minimization
subproblems. The sum of the substeps produced as solutions of these subproblems yields the total
trial step. The outer loop counter is i; the inner loop counter is k. Thus k corresponds to the
block number of constraints. If the subscript k is used with a constant, that constant refers to
the properties of the k-th block of constraints, independent of the iterates. Note that the term

"inner loop" is formal. The purpose of the inner loop is to compute a basis for the null space of the
Jacobian of our constraint system, but step-by-step, using information at different points, instead
of the simultaneous computation of, say, the Newton's method.

*Natalia Alexandrov and J. E. Dennis, Jr. A class of general trust-region multilevel algorithms for systems of
nonlinear equations: Global convergence theory. In preparation.
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We denote the sequence of points generated by the outer loop of the algorithm by {x'} when
we consider the iterates as members of the sequence in convergence analysis. Otherwise, we use xc,

x-, and x+ to denote the current, the previous, and the next iterates, respectively.
We denote the sequence of points generated within each inner loop by Yk, k = 0,..., M + 1,

when we need not consider the outer loop iteration number. Most of the time we shall be discussing
entities within a single iteration. Otherwise, we use subscripts and superscripts. For example, y4

or yk denote the inner k-th iterate within the i-th outer loop. Note that yo = x. and yM+i = x+.
The substep produced by solving the k-th subproblem of the inner loop is denoted by Sk, k =

1,..., M + 1. The sum s, +... + sM+1 yields the total trial step i,. Again, we use subscripts, e.g.,

ii, to denote the total step as a part of the sequence of steps produced by the algorithm.
We denote the radius of the trust region for subproblem k, centered at yk-1, by bk, k =

1,..., M + 1. The radius of the total trust region, centered at x, = yo is 6, or i.
We donote the projector onto the intersection of null spaces of VCi (x), . . ., VCk(x) by Pk.
Again, when we omit superscripts, we refer to the objects within a single outer loop. For

example, Ck(Yk-1) refers to Ck(y'k- 1 ) or Ck(y'_-).
Additional notation will be introduced as needed.

3.2 General Description

The general glass of multilevel algorithms can be described in the following way. The constraint
system of the problem is partitioned into M arbitrary blocks. In practice, this block decomposition
is obvious in most cases. At the current approximation to a solution of problem EQC, x,, we set

yo = x,. The trial step is computed as follows.
We find an approximate minimizer, sl, of the quadratic Gauss-Newton model about yo of the

first block of constraints in the trust region of radius bl. The step is required to satisfy a fraction
of Cauchy decrease condition for this model and a mild boundedness condition disussed in the next
subsection. The step is taken to yield the point yl = yo + sl.

We then find an approximate minimizer of the quadratic model of the second block of con-
straints, restricted to the null space of the Jacobian of the first block. This model is built using the
information at the new point. It is important to emphasize that all the function and derivative
information for the second block is computed at the new point yl. The next step, 52, bounded by
its own trust-region, is obtained to satisfy a fraction of Cauchy decrease condition for this restricted
model of the second block. The step is taken to yield the point Y2.

The process of computing steps that satisfy sufficient predicted decrease for the restricted models
of progressively smaller dimensions continues. Again, the model for each block is built by
using the function and derivative information at the most recently computed point.
The final step on the constraints, 8 M, is obtained to produce sufficient predicted decrease in the
quadratic model, at yM-1, of the last block of constraints, restricted to the intersection of the null
spaces of the Jacobians of all previous blocks.

When all the constraint blocks have been processed, n - m degrees of freedom still remain.
The remaining variables are used in building a model of the objective function, so that the final
substep, aM+1, is obtained to produce sufficient predicteddecrease in the quadratic model at yM
of the objective function, restricted to the intersection of the null spaces of the Jacobians of all
constraint blocks. The final step is taken to yield the next major iterate, i.e., the next approximation
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to a solution of problem EQC. Thus, the total trial step from x, to x+ is the sum of the substeps

in the inner sweep, i.e., i, = s, + ... + sm+,.
Unless the convergence criterion is met, the total trial step is evaluated, and the algorithm

returns to process again the first block of constraints in a trust region determined by the success

or failure of the trial step.

3.2.1 Computing the Substeps

During the constraint elimination stage, the substeps solve the following subproblems:

minimize ½1_Ck(yk-I) + VCk(yk-I)T8IJ

subject to VCj(yj_3 )T ,j= 1,...,k- 1,

and possibly an additional constraint

on the step direction,

and JIsl12  6k

for k = 1,...,M. (Note that for k 1 there is no null space constraint.) Then the objective

function subproblem is:

minimize f(yM) + Vf(yM)Ts + ½ST H(yM)s

subject to VCj(yj_.)Ts = Oj = 1,..M,

and possibly an additional constraint

on the step direction,

and ItsI12 _ 6 M+l.

If there is no additional constraint on the direction of the step, the subproblems produce a

trust-region generalizaton of the local Brent step. A constraint requiring that the step be parallel
to some coordinate hyperplane would be a generalization of the local Brown step. In practice, there

is no explicit constraint for the generalization of the Brown step; rather it is computed implicitly.

Let Qk-1 be a matrix the columns of which form a basis for the intersection of the null spaces of

VCI(yO),. . ., VCk-1(Yk-2). A change of variables, v = Qk-ls, converts the constrained subprob-

lems to unconstrained ones.
For relatively small problems, the null space bases can be computed by using the QR decom-

position to find the basis for null space of VC1 (yo), and then by updating the decomposition for

subsequent subproblems to find a basis for the null space intersections. For larger problems, the

QR decomposition becomes prohibitively expensive. In that case, reduced basis projectorb can be
used. More details about the null space basis computations can be found, for example, in (27].

There are various methods for solving large-scale trust region subproblems. We are holding

much hope for the method recently developed by D. Sorensen of Rice University.

However, once the subproblems with null space constraints are converted into unconstrained
trust-region subproblems, the steps may be chosen in any manner, as long as they satisfy two mild

conditions.

1. As mentioned earlier, if there are no additional constraints on the subproblem k, its solution,

a Levenberg-Marquard step for the reduced problem, produces a generalization of the Brent
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step. That is, the substep is orthogonal to the linearized constraint hyperplane, for all blocks
numbered k + 1,..., M. However, we do not require that the substeps be orthogonal. We
require that each subst-, satisfies

114ii • AkIIfk(Yk-0. )II (7)

for some positive constant Ak that depends only on the properties of that particular constraint
block but is independent of the iteration. Other conditions are possible to assure global
c'nvergence. However, this condition, first formalized in [19], is reasonable in that it is
enforced automatically by any algorithms of interest for computing linearly feasible points.
For instance, this is easily shown for the extensions of both Brown and Brent steps.

2. We also require for each substep to satisfy a fraction of Cauchy decrease condition for the
particular subproblem that substep solves. This is also a very mild condition-it is satisfied by
all reasonable methods. Note that we do not place any conditions on the total trial step-only
on the substeps.
It is easy to show that if sB-B is an unconstrained Brown or Brent substep (or any substep

out of the local Brown-Brent class), we can claim the following:

IIs,-BII < 6k, then let sk = sk -. Otherwise let

* B-B()
Sk = 6A * SI

Then sk satisfies the fraction of Cauchy decrease condition on subproblern k. The proof is
given in Alexandrov and Dennist.

Thus, we see that simply truncating the unconstrained Brown or Brent substep to the size
of the trust region will produce sufficient predicted decrease in the models of the constraint
blocks.

3.2.2 The Merit Function and Its Model

Merit functions used to evaluate the progress of single-block trust-region algorithms consist of some
combination of the objective function and the constraints. One common merit function is the t2

penalty function f(z) + pIIC(X)12I, where p is the penalty parameter.

In the process of the multilevel algorithm development, it has become apparent that conven-
tional merit functions are inadequate for measuring progress of the multilevel methods, because a
conventional merit function does not take into account the order in which minimization proceeds.

The difficulty can be summarized as follows:

* The result of the k-th minimization subproblem predicts decrease for the k-th component
from point Yk-i to point yk. It predicts no change for all previous blocks. However, there
is no prediction at all about how s, + .-. . + sk changes and likely increases the norms of the
blocks numbered k + 1,..., M. Neither does any substep, except SM+I predict the behavior
of the objective function.

tNatafia Alexandrov and J. E. Dennis, Jr. A claws of general trust-region multilevel algorithms for systems of

nonlinear equations: Global convergence theory. In preparation.
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This observation brought us to the conclusion that the merit function must take into account
the multilevel structure of the scheme. Consider the following modified t2 penalty function:

P~x;(pi--..,PM) = f(x) + PM(IICM(x)112

PM-l(IICM_-l(X)ii 2 + PM- 2(IICM- 2(x)II2 +-- + p2(1lC2(X)11 2 + P, IIC,(x)11 ))))
M M

f(X) + -([J Pj)BlCk(x)112,
k--=1 jmk

where Pk _2: 1, k = I,...,M. where Pk _> 1, k = 1,-... M. The initial choice Pk = 1 is arbitrary
and scale-dependent. The only requirement is that Pk _> 1. For theoretical purposes, the problem
is assumed to be well-scaled.

The new merit function penalizes for the possible predicted increase in the constraint blocks
k,..., M, or in the objective function that may have occured during inner loop iterations 1,...,k-1.

At yM+l = x+ = xc + ic, we model each IICk(x+)112 by IICk(yk-1) + VCk(yk..)skJI 2 , and so we
model the merit function at x+ by

M •( ,..,SM+1;,P,.. .,PM) f(YM) + Vf(YM)TSM+I + T-H(YM)SM+I

+IICM(yM-1) + VCM(YM-1) TSMII 2 + P.M-1(IlCM-1(YM-'2) VCM-1(YM-2) T MIM 112

+PM-(IICM-2(YM-3) + VCM-2(YM-3)T SM-2112 +...
+pc(IlC 2( /) + VC 2(yl)T 8 II + P;IIC(Yo) + VC1(yo)TS 1II2)))

- f(YM) + VI(YM)TSM+1 + STM+IH(yM)sM+1

M M

+ ,(1- pj)lJCk(Y-1) + VCk(yk_,)T Ski 2 .
k=1 j=k

We define the actual reduction as the difference between the merit function values at x, and
z+, and we define the predicted reduction as the difference between the value of the merit function
at x, and the value of the model at z+.

3.2.3 Updating the Penalty Parameters

This penalty parameter updating scheme for multilevel methods generalizes the scheme proposed
in EI-Alem [10], [11]. It ensures that our merit function has an essential property, namely, that

unless an iterate is optimal, the predicted reduction should always be positive. We use the following
procedure:

Algorithm 3.1 Penalty Parameter Updating Algorithm (Done on completion of each inner
sweep of minimization problems.)

Denote the set {si,.. .,sk} by Sk and denote the -.et {pi,...,pk} by pk.
At the beginning of a multilevel algorithm, set p = ... = pm = I and choose a E (0, 1).

1. Compute Cpred1 (sl) = IICI(yo)ll 2 - IICI(yo) + VC1 (yo)TS1112.
2. Dok= 1,M
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Update pk.
Compute

Cpredk+l (Sk+l; #-I, Pk)=

[IlCk+l (YO)1I 2 - IlCk+l (yk) + VCk+1(yk) Tsk+l 112
+pk Cpredk(Sk; POL-.)"

if Cpredk+l (Sk+I; Pk-1, P Ž-)
P&Cpredk(Sk;p•'- 1 ) then

P1 = Pk"
Cpredk+1 (Sk+1; pc. 1 , Pc) =

Cpredk+l (Sk+I; Pk_-1, Pk-).

else

PI =gk +f~
2[liCk÷, (Yk)+VCk*+ (Yk )Tsk÷ 112-- ICk+l (Vo)11 21where jik = Cpredk(S;Pk_,)

Compute Cpredk+l (Sk+i; P,-i, IP).
end if
end Do

3. Update PM.
Compute

pred(SM; p6_ 2, PiM1 ) =
[f(yo) - -OM(sM)] + pMCpredM(SM; P#M1-).

if pred(SM; #M_-2, pM•_.) >

2ýfCpredM(SM; p#M'l) then

Pt4 = PM*
pred(Sp; PM-2, P.M-1) = pred(SM; 4c-2, PM-1)"

else

pfM = P-M +, 2[0A((,A)-f(yo)"
where Pm = Urdm(suiPI-_•).

Compute pred(SM; #M_2, pM_1).
end if

End

Note that without updating the penalty parameters we can be assured of the positive predicted
reduction from xc only for the first block of constraints, i.e., only Cpred1 (s1 ) is definitely positive

without additional considerations. To ensure that Cpred2 (s31 , 82;p) is positive, we may have to

increase pi. Now that Cpred2(sj,s82;p) is positive, we use it to ensure that the next partial

predicted reduction is positive, and so on. So, for each each substep st, the predicted reduction

accumulated by the step s1 + . . + Sk is at least a fraction of the predicted decrease accumulated
by the step sl + _.+ .

Thus the predicted reduction of the first block is the most heavily penalized one.

It should be emphasized that the step computation is completely independent of the penalty

parameter computation.

11



3.2.4 Step Evaluation and Trust-Region Radii Updating

Although there are various schemes of evaluating the trial step and updating the trust region radii,
for the sake of simplicity in discussion, we adopt the following strategy:

* The total trial step is evaluated outside the inner loop.

* All individual trust region radii are equal and are updated simultaneously by the same factor.

Other strategies for practical implementations are discussed in Alexandrovt. We would like to
emphasize that the simultaneous expansion or conti action of the trust region radii is not a technical
requirement.

The algorithm for evaluating the step and updating the trust region radii follows.

Algorithm 3.2 Step Evaluation / Trust Region Update

Given bk > 0,k = 1,...,M (or k = 1,...,M + 1 for optimization), 65ma > 0,6mm, > 0,0 < ii <
r < 1,cal E (0, 1], a2 > 1, xc E Rn, ared, pred,

Computer = -dif r < ih then (step not accepted)

k= al * k

else if r > r1 then (step accepted)
6k = min{6,ba,max{6mni,, a2 * 6k}}.

Xc = X+.

else ( step accepted)

6k= max{6 min=l}
Xc = X+.

end if

We note that if the step is not accepted, the trust region radii are decreased withoutany safe-
guard. However, if the step is accepted, the next trust region radius is set to be no smaller than a
predetermined positive value ,ni,,. This strategy is extremely important in the global convergence
theory. It ensures that the trust region radius is bounded away from zero and hence that the
penalty parameters are bounded from above. This technique was introduced in [16].

3.2.5 The Stopping Criteria

We use the first order necessary conditions for problem EQC to terminate the algorithm and require
that

IICI(Yo)ll f_ ,lo (9)

UIC2 (Yi)11 O fo

IIC (YM-0)II _-_ 'Eto

IJPTVf(YM)II _E
INatalia Alexandrov. On implementation of multilevel algorithms for nonlinear equations and equality constrained

optimization. In preparation.
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hold simultaneously.
Since

iJSklJ = o(JJCk(Yk-1)JJ),

if IICk(yk-1)JI is small, 1skl1 will be small and the inner loop iterates Yk will be close to each other,
and in the limit we can show ([1]) that at least a subsequence of the generated sequence of the
outer loop iterates will converge to a stationary point of problem EQC.

The tolerance parameters ctqo need not be the same, but for convenience, they are taken to be
the same throughout the convergence analysis.

The reason for requiring such a stopping criterion is theoretical and practical. The conventional
test for the entire norm of the constraint residual being close to 0 does not differentiate between the
individual IICk(yk-1)II. It is essential for the convergence proof to determine how close to feasibility
an iterate must be in order for the penalty parameters not to be increased. This is a measure of
feasibility versus optimality. The conventional stopping criterion allows only the total feasibility to
be measured and thus to determine when PM does not have to be increased. But even if pM is not
increased, pi,... ,PM-i may have to be increased because of the relative sizes of the component
block norms. The conventional criterion does not allow us to measure relative feasibility of one
block of constraints with respect to the others.

In practice, we do not wish to evaluate the residuals at the same point just for the sake of the
stopping criterion.

Other stopping criteria are possible, but the one above is the most natural one.

3.2.6 The Statement of the Algorithm

The formal description of the algorithm follows.
Let the constraints be partitioned into M blocks.

Algorithm 3.3 Multilevel Algorithm for Equality Constrained Optimization

Given 6k > 0, k = 1,..., 7M,6nax > 0, bmi,, > 0, 0 < r71 < 172 < 1,oal E (0, 11, a2 > 1, x, E .

Outer Loop: Do until convergence:
Yb = zc.
Compute the trial step.
Inner Loop: Do k = 1, M

If yk-i is not feasible then
Compute sA that satisfies a fraction of Cauchy decrease
condition on 2 lCt(yk-1) + VCk(ykl)Sff2 restricted to

the intersection of the null spaces of VCj(yj_,)Ts = 0,j = 1,...,k - 1,
and 1118k :5 AkJICk(yk.:) (satisfied automatically).

yk = yk-i + Sk.

End if
End Inner Loop
Compute 8 M+1 to satisfy the fraction of Cauchy decrease
condition on the subproblem: minimize OM(sM) restricted to

13



the intersection of the null spaces of J,(yi- I.)s = O,j = 1,.. .,

and 113112 • 6M l

!M+I - IM +" 8 M+1-.

+= YM+1.

The trial step is: S, = si + ... + sM+-.

Update the penalty parameters
Evaluate the step and update v€he trust region radius
If the step is accepted, set zx = x+.

End Outer Loop

We should note that there is an option to eliminate only a subset of constraints via the described
procedure. In this case, the rest of the constraints and the objective function would be restricted to
the intersection of the null spaces of the Jacobians of the processed constraints, and the resulting
reduced optimization problem would be solved by a chosen method. The discussion of this approach
is left for later work.

4 Global Convergence Results

In this section we give a summary of the global convergence theory for multilevel algorithms.

4.1 Basic Ingredients of a Global Convergence Proof

Our proof contains the general ingredients of a global convergence analysis for a trust-region
method. The first three are requires for a typical analysis of an unconstrained minimization algo-
rithm.

1. The trial step must be shown to satisfy a sufficient predicted decrease condition, usually the
FCD condition. Our algorithm assumes that the substeps satisfy the FCD condition on the
subproblems. It remains for us to show that the total step from x, to x+ satisfies a suitable

decrease condition.

2. The difference between the actual and predicted reduction must be bounded above by at least

a constant multiple of the square of the total step norm plus multiples of higher powers of
the step norm. This is easily shown multilevel algorithms.

3. The algorithm must be shown to be well-defined, i.e., we must prove that the ratio of the
actual reduction to predicted reduction can be made greater than a given 7h E (0, 1) after a
funte number of trial step computations. Given 2, it is easy to show that as the trust region
radius approaches zero, the ratio of the actual reduction to predicted reduction approaches
one. For the algorithm to be well-defined we must show that the ratio of the predicted to
actual reduction approaches one faster than the trust region radius goes to zero. This is easily
established for our algorithm.

An algorithm for constrained optimization that uses penalty parameters in its merit function
requires the fourth ingredient.

14



4. The penalty parameter in the merit function must be shown to be bounded. The technique is
to prove that the product of the penalty parameter and the trust region radius is bounded by
a constant independent of the iterates. The sequence of the trust region radii is then shown
to be boun ed away from zero. Here a crucial role is played by the trust region updating
technique introduced in [16]: after a successful iteration and before starting the next iteration,
the trust region radius is set to be no smaller than a pre-defined value. This way of updating
allows us to prove that the sequence of penalty parameters is bounded from above.

The method for updating the penalty parameters ensures that the sequence of penalty param-
eters is nondecreasing §, which, together with its boundedness, allows us to conclude that the
penalty parameter sequence converges and, moreover, remains constant after a finite number
of increases. This fact is used in the global convergence theorem.

4.2 Assumptions

We make the following assumptions on the problem and the sequence of steps and iterates:

"* f, C are at least twice continuously differentiable.

" The gradient of the constraints has full rank. This is a strong assumption, but it is a standard
practice to require it for the sake of convergence proofs. Practical experience suggests that
the breakdown of this assumption does not necessarily diminish the efficacy of our algorithm.
Not assuming full rank would allows us to prove a slightly weaker convergence result.

"* f(x), Vf(x), V 2 f(X), HM, C(z), VC(X), VCk(X), V 2C,(X),j = 1,...,M,

{[PVCk(x)]T[p-kIVCk(x)]}-, k - 1,...,M, are all uniformly bounded in normfor all x
in the domain of interest.

Since we require that the Hessian of the objective function be only bounded, we can even take
it to be 0. Of course, such an approximation would lower the effectiveness of the algorithm.

4.3 Summary of the Proof

In this subsection we provide an overview of steps in the convergence proof. The details can be

found in [1] and Alexandrov and Dennis .

"* We show that under our assumptions, the norm of any intermediate sum of the substeps is
bounded by a costant times the norm of the total trial step.

"* Several technical results provide workable expressions of the FCD (fraction of Cauchy de-
crease) condition similar to the one used for unconstrained optimization.

"• A standard result provides and upper bound on the error between actual reduction and
predicted reduction.

$The global convergence theory for algorithms with nonmonotone penalty parameters has been investigated by

Mahmoud El-Alem [12].
1 Natalia Alexandrov and J. E. Dennis, Jr. A class of general trust-region multilevel algorithms for systems of

nonlinear equations: Global convergence theory. In preparation.
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" By virtue of the penalty parameter updating scheme, the multilevel algorithms have the
property that if an iterate is feasible, the penalty parameters are not increased. We show
that if the iterates are sufficiently close to feasibility, the penalty parameters are not increased
either. This result is crucial to the proof of convergence, giving a sufficient condition for the
penalty parameters not to be increased.

" Next we establish an upper bound on the product of the penalty parameters with the trust
region radii. This result allows us to conclude that the radii are bounded below if the penalty
parameters increase. The penalty parameter sequences are shown to be nondecreasing, which,
together with their boundedness from above, allows us to conclude that the penalty param-
eters tend to a limit, and, moreover, stay constant after a finite number of outer iterations.
The limit is shown to exist, but its explicit expression is not known.

" We have shown that the total trust region radius is bounded away from zero if any of the
penalty parameters are increased. Now we show that radius is always bounded away from
zero. The trust region updating strategy ensures that is is bounded from above.

" The next result guarantees that the algorithm is well defined, i.e., that after a finite number
of outer loop iterations an acceptable step -c with

ared
pred -

will be found.

" In the global convergence result, we show that if the objective function is bounded below, then
the sequence of iterates generated by a multilevel algorithm has a subsequence convergent to
a stationary point of the equality constrained minimization problem.

" As a corollary, we can now conclude that the multilevel algorithm for nonlinear equations is
also globally convergent.

5 Discussion and Concluding Remarks

We have described a broad new class of multilevel algorithms for solving the nonlinear equations
problem and the equality constrained optimization problem. The class can be considered as a
globalization and an extension of the local class of algorithms of Brown and Brent for solving
nonlinear systems of equations.

The main practical appeal of the multilevel algorithms is that in the case of equality constrained
optimization, they allow the user to partition the constraint system arbitrarily, to fit the application,
and to process the blocks of constraints separately. In their finite-difference derivative form, they
require fewer function evaluations than the Newton's method.

The multilevel class is characterized by requiring very mild conditions to be imposed on the
trial steps. All reasonable algorithms satisfy these conditions automatically.

We have established global convergence theory for the entire class. The theory implies conver-
gence of the nonlinear equations solver, which, to the author's knowledge, is the first theoretically
supported method for globalizing Brown-Brent methods. The global convergence theory was made
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possible by the introduction of the new merit function that takes into account the order of the
constraint processing. The nested penalty parameters are updated by an extension of the scheme
proposed by El-Alem (101.

The algorithms are expected to be applicable to the problem of the multidisciplinary design
optimizatic.n and to serve as a foundation for the study of the general multilevel optimization
problem.

We would like to mention one more application. The design of complex engineering systems is
by nature a multicriteria optimization problem. The design projects are distinguished by very large
numbers of variables, constraints, and expensive analyses. To solve the problem, it is necessary
to break it into disciplines, each of which produces its own optimal design. The discipline designs
are then incorporated into a total design. The multilevel methods proposed here would allow
researchers to integrate constraints obtained from different sources.

To solve the multicriteria optimization problem, it is necessary to decide when an iterate is
optimal. One of the approaches to optimality is the statement of the multicriteria problem as a
multilevel optimization problem, i.e., the problem of minimizing a function on a feasible set, which
is an optimal set for another function, and so on. In such an approach, the user places priorities
on the optimization problems that are to be solved sequentially. We believe that the multilevel

algorithms proposed here will serve as a beginning for a detailed study of the general multilevel
optimization problem.

Directions of research in progress include local convergence rates, implementation, extensive
testing on applications, incorporation of bound and inequality constraints, and extensions to general
nonlinear bilevel and multilevel optimization.
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